RF3 Induces Ribosomal Conformational Changes Responsible for Dissociation of Class I Release Factors

نویسندگان

  • Haixiao Gao
  • Zhihong Zhou
  • Urmila Rawat
  • Chenhui Huang
  • Lamine Bouakaz
  • Chernhoe Wang
  • Zhihong Cheng
  • Yuying Liu
  • Andrey Zavialov
  • Richard Gursky
  • Suparna Sanyal
  • Måns Ehrenberg
  • Joachim Frank
  • Haiwei Song
چکیده

During translation termination, class II release factor RF3 binds to the ribosome to promote rapid dissociation of a class I release factor (RF) in a GTP-dependent manner. We present the crystal structure of E. coli RF3*GDP, which has a three-domain architecture strikingly similar to the structure of EF-Tu*GTP. Biochemical data on RF3 mutants show that a surface region involving domains II and III is important for distinct steps in the action cycle of RF3. Furthermore, we present a cryo-electron microscopy (cryo-EM) structure of the posttermination ribosome bound with RF3 in the GTP form. Our data show that RF3*GTP binding induces large conformational changes in the ribosome, which break the interactions of the class I RF with both the decoding center and the GTPase-associated center of the ribosome, apparently leading to the release of the class I RF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posttermination Ribosomal Complex Is the Guanine Nucleotide Exchange Factor for Peptide Release Factor RF3

The mechanism by which peptide release factor RF3 recycles RF1 and RF2 has been clarified and incorporated in a complete scheme for translation termination. Free RF3 is in vivo stably bound to GDP, and ribosomes in complex with RF1 or RF2 act as guanine nucleotide exchange factors (GEF). Hydrolysis of peptidyl-tRNA by RF1 or RF2 allows GTP binding to RF3 on the ribosome. This induces an RF3 con...

متن کامل

Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3.

Protein release factor 3 (RF3), a guanosine triphosphatase, binds to ribosome after release of the nascent peptide and promotes dissociation of the class I release factors during the termination of protein synthesis. Here we present the crystal structure of the 70S ribosome with RF3 in the presence of a nonhydrolyzable GTP analogue, guanosine 5'-β,γ-methylenetriphosphate (GDPCP), refined to 3.8...

متن کامل

Cryo-EM visualization of the ribosome in termination complex with apo-RF3 and RF1

Termination of messenger RNA translation in Bacteria and Archaea is initiated by release factors (RFs) 1 or 2 recognizing a stop codon in the ribosomal A site and releasing the peptide from the P-site transfer RNA. After release, RF-dissociation is facilitated by the G-protein RF3. Structures of ribosomal complexes with RF1 or RF2 alone or with RF3 alone-RF3 bound to a non-hydrolyzable GTP-anal...

متن کامل

Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner.

Ribosomes complexed with synthetic mRNA and peptidyl-tRNA, ready for peptide release, were purified by gel filtration and used to study the function of release factor RF3 and guanine nucleotides in the termination of protein synthesis. The peptide-releasing activity of RF1 and RF2 in limiting concentrations was stimulated by the addition of RF3 and GTP, stimulated, though to a lesser extent, by...

متن کامل

Timing of GTP binding and hydrolysis by translation termination factor RF3

Protein synthesis in bacteria is terminated by release factors 1 or 2 (RF1/2), which, on recognition of a stop codon in the decoding site on the ribosome, promote the hydrolytic release of the polypeptide from the transfer RNA (tRNA). Subsequently, the dissociation of RF1/2 is accelerated by RF3, a guanosine triphosphatase (GTPase) that hydrolyzes GTP during the process. Here we show that--in c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 129  شماره 

صفحات  -

تاریخ انتشار 2007